
Ram Krishna Rathore et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 1), February 2014, pp.737-746

 www.ijera.com 737 | P a g e

An Adaptive Approach for Single Objective Optimization

Ram Krishna Rathore *, Kaushal Sharma **, Amit Sarda***
*Assistant Professor in the Department of Mechanical Engineering at CCET, Bhilai (C.G), India

** Engineer- Inspection, RITES Ltd. India,

*** Associate Professor in the Department of Mechanical Engineering at CCET, Bhilai,

ABSTRACT
The use of evolutionary computation in the solution of optimization problems of non-linear type is not new.

Many such problems having single or multiple objectives are now routinely solved using different evolutionary

methodologies. Through this project, I am delighted to share some recent advances in the area of evolutionary

computing. Some critical issues, such as design of an efficient evolutionary algorithm, an efficient constraint

handling procedure, scalability issue of algorithms are dealt in this project. The discussion of the topics and

subsequent engineering and numerical case studies presented in this project should be useful to non-linear single

objective problems alike. Nonlinear Programming by Quadratic Lagrangian (NLPQL) techniques are

extensively used for solving realistic optimization problems, particularly in structural mechanics. The common

arrangement of NLPQL techniques is briefly discussed and it is shown how these techniques can be tailored for

distributed computing. Still, NLPQL techniques are responsive topic to errors in parameters and gradient

evaluations. Typically they take more time to compute the converged solution with more number of simulation

calls. In case of noisy function values, a radical enhancement of the performance can be gained through

Adaptive Nonlinear Programming by Quadratic Lagrangian (A-NLPQL) compared to the version with

conventional NLPQL. Numerical results are presented for a set of six standard test examples.

Keywords - NLPQL, Single Objective Optimization, nonlinear programming, distributed computing

I. INTRODUCTION
Several types of optimization techniques

are existed to solve diverse problems. Even though,

for designers to employ optimization at their place

of work they require to comprehend the hypothesis,

the theory and the procedures for these techniques.

This is due to realistic problems might necessitate

altering algorithmic parameters and constant scaling

and adjusting the available techniques to fulfills the

definite application. Especially, the user might have

to practice various optimization techniques to locate

one that can be effectively applied. The definitive

objective of every such choice is either to minimize

the attempt required or maximize the required

advantage. Because also of these objectives in any

physical circumstances can be uttered as a function

of definite design variables, optimization might also

be distinct as the method of finding the

circumstances that provide the maximum or

minimum value of a function.

It is remarkable to remind that the key growths in

the field of arithmetic techniques of unrestrained

optimization have been prepared in the United

Kingdom just in the l960s. The improvement of the

simplex technique by Dantzig in 1947 for linear

programming problems and the annunciation of the

principle of optimality in 1957 by Bellman for

dynamic programming problems lined the direction

for progress of the techniques of constrained

optimization Work by Kuhn and Tucker in 1951 on

the essential and adequacy circumstances for the

optimal solution of programming problems laid the

foundations for a great deal of afterwards research

in nonlinear programming. The offerings of

Zoutendijk and Rosen to nonlinear programming in

the early 1960s have been very important. Even

though no particular method has been establish to be

communally suitable for nonlinear programming

examples, effort of Carroll and Fiacco and

McCormick authorized lots of intricate problems to

be solved by means of the well-known methods of

unconstrained optimization Geometric programming

was created in the l960s by Duffin, Zener, and

Peterson. Gomoiy did revolutionary work in integer

programming, one of the greater stimulating and

rapidly growing areas of optimization. The reason

for this is that usually real-world applications fall

under this class of problems. Dantzig and Charnes

and Cooper created stochastic programming

methods and resolved problems by assuming design

parameters to be autonomous and usually

distributed. The need to optimize more than single

objective or goal while fulfilling the physical

boundaries led to the growth of multi-disciplinary

programming techniques. Goal programming is a

famous method for solving precise types of single

objective optimization problems. The goal

programming was initially projected for linear

RESEARCH ARTICLE OPEN ACCESS

Ram Krishna Rathore et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 1), February 2014, pp.737-746

 www.ijera.com 738 | P a g e

problems by Charnes and Cooper in 1961. The

basics of game hypothesis were laid by von

Neumann in 1928 and ever since then the method

has been useful to answer numerous mathematical

economics and military problems. Simply in the last

few years has game theory been useful to solve

engineering design problems. Genetic algorithms,

Simulated annealing, and neural network methods

signify a new class of mathematical programming

methods that have come into fame during the last

decade.
 [35]

A significant solution with relevance to the Non

linear programming based optimization methods to

engineering fields has been the elevated

computational cost because of the huge amount of

simulation calls necessary for these techniques
[1]

. A

general approach to decrease the computational

attempt for such optimization techniques when

integrated with simulation models is to use

metamodeling techniques. Researchers have been

quite active in developing models and methods that

improve the efficiency of the NLPQLs in terms of

the number of simulation calls. Some of these

approaches are based on fitness approximations in

which neural network
[3–5]

, response surface
[6]

,

Kriging
[7]

, and radial basis function
[8]

 methods are

used for metamodeling. Others use fitness

inheritance approaches
[9,10]

in which the fitness of

an offspring is inherited from its parents. A

comprehensive review of fitness approximation and

metamodeling approaches can be found in Ref. [16]

and Refs. [17–19] respectively. The fitness

approximation methods are of two types: off-line

(non-adaptive) and on-line (adaptive). In off-line

techniques, metamodels are created independently

and earlier at the beginning of an optimization

algorithm
[4,6–8,20,21]

. The deficiency of the offline

techniques is that it is complex to attain both an

excellent reliability metamodel above the complete

design space and at the same time keep a small

number of simulation calls
[18,20]

. The on-line

techniques utilize a group of metamodeling with the

simulation model at the optimization process while

adaptively enhancing the metamodel
[2,3,5,11–14]

. Most

of the on-line techniques created until now are

focused on single-objective optimization.

The study on how to implant metamodeling inside

Non Linear Programming by Quadratic Lagrangian

(NLPQL) remains sparse. In on-line techniques, the

primary phases of the NLPQL, coarse design points

are formed with metamodels are created. These

metamodels are then steadily enhanced as further

simulation data become accessible. Some of this

type of techniques employs regression

metamodeling, which is well-known to necessitate a

huge number of simulation calls. Another uncertain

problem in the present adaptive techniques is how to

impartially choose when to switch to the metamodel

in its place of using the simulation in the

optimization. Typically, the toggling among the

definite simulation model and the consequent

metamodel is intuitively decided. Furthermore, the

reliability of the metamodel may vary extensively in

the optimization procedure and this can cause

fluctuation.

I employ a goal measure to decide whether a

simulation model or its Kriging metamodel

substitution have to be used to assess design points.

The projected decisive factor is created on the basis

of the metamodels expected error, which can be

simply attained as a consequence from Kriging and

Latin Hypercube Sampling. In the anticipated

technique, the Kriging metamodels for objective and

restraint functions are constructed and adaptively

enhanced inside a NLPQL by means of Latin

Hypercube Sampling technique (as A-NLPQL or

Adaptive-Non Linear Programming by Quadratic

Lagrangian). The technique is universal and needs

no extra simulation call previous to the beginning of

the optimization process to construct the Kriging

metamodels. These present results demonstrate that

the projected technique decides the problem

frequently reported in the literature, that is, the

metamodel possibly of small reliability and that it

may create false optima.

II. PROBLEMS IDENTIFICATION
Now days there are so many techniques,

which are working on optimization technique; they

take lots of iterations and population creation. The

common issues appear with the working of

conventional or simple single-objective algorithms

are as follows:

1. Simulation calls counts are more in case of

conventional optimization techniques.

2. It requires a control of design of experiment for

the initial population creation, which has to deal

with the efficiency of the various algorithm and

design points generation.

3. Time required for converging the solutions and

simulations are more.

4. A Response Surface Optimization system draws

its information from its own Response Surface

component, and so is dependent on the quality

of the response surface.

On the basis of above listed problem the algorithms

are evaluated and compared to show the usability.

III. OBJECTIVE
Although kriging’s and NLPQLs have been

extensively used in engineering design optimization,

the significant confront still faced by designers in

using these methods is their high computational cost

due to the population-based nature of these methods.

In particular, a number of techniques incorporating

metamodeling with NLPQL based methods have

Ram Krishna Rathore et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 1), February 2014, pp.737-746

 www.ijera.com 739 | P a g e

been reported in the literature [Hailong You, 2009].

A metamodel means a simplified approximation of

the original simulation model.

The objective of Research Thrust is to develop an

approach to measure the uncertainty in the

prediction of responses from the metamodels so that

the risk of generating false optima can be reduced.

The goal is to develop a NLPQL that can converge

to the Pareto front using significantly fewer number

of simulation calls compared to a conventional

NLPQL.

IV. ASSUMPTIONS
The In generating the robust optimization

approach, we make the following assumptions:

 The range of parameter uncertainty is known as an

interval (or several discrete intervals) a priori.

Interval uncertainty is not required to be

continuous.

 An acceptable variation range for each objective

function in the optimization,

 Simulations used in optimization problems are

considered as “black boxes” that will provide the

identical responses (outputs) when the same inputs

are supplied.

 Design variables and/or parameters in

optimization problems can be continuous-discrete.

V. ADAPTIVE NON-LINEAR PROGRAMMING BY

QUADRATIC LAGRANGIAN (A-NLPQL)

APPROACH
Adaptive–Non linear Programming by

Quadratic lagrangian (A-NLPQL) is a mathematical

optimization method that combines a Latin

Hypercube Sampling (LHS) Design of Experiments,

a Kriging response surface, and the NLPQL

optimization algorithm. It is a gradient-based

algorithm based on a response surface which

provides a refined, global, optimized result.

Adaptive-NLPQL Single-Objective optimization

supports a single objective, multiple constraints, and

is limited to continuous parameters. It is available

only for Direct Optimization systems.

Like the NLPQL method, this method solves

constrained nonlinear programming problems of the

form:

Minimize: F = f({x})

Subject to: gk({x})  0 k = 1, . . . , K

hl ({x})  0 l = 1, . . . , L

where { xL}  {x}  {xU}

The purpose is to refine and reduce the domain

intelligently and automatically to provide the global

maxima.

A-NLPQL Steps

1. LHS Sampling: Latin Hypercube Sampling

(LHS) is used for the Kriging construction.

When a new LHS is generated after a domain

reduction, all the existing design points between

the new bounds are kept. In the two-dimensional

example below, only three new design points are

evaluated because three old ones are kept.

Fig. 1 LHS sampling

2. Kriging Generation: A response surface is

created for each output, based on the current

LHS and consequently on the current domain

bounds.

3. NLPQL Algorithm: NLPQL is run on the

current Kriging response surface to find

potential candidates. A few NLPQL processes

are run at the same time, beginning with

different starting points, and consequently,

giving different candidates.

4. Candidate Point Validation: All the obtained

candidates are either validated or not, based on

the Kriging error predictor. The candidate point

is checked to see if further refinement of the

Kriging surface will change the selection of this

point. A candidate is considered as acceptable if

there aren’t any points, according to this error

prediction, that call it into question. If the

quality of the candidate is called into question,

the domain bounds are reduced; otherwise, the

candidate is calculated as a verification point.

 Refinement Point Creation (If the selection

will not be changed): When a new verification

point is calculated, it is inserted in the current

Kriging as a refinement point and the NLPQL

process is restarted.

 Domain Reduction (If the selection will be

changed): When candidates are validated, new

domain bounds must be calculated. If all of the

candidates are in the same zone, the bounds are

reduced, centered on the candidates. Otherwise,

the bounds are reduced as an inclusive box of

all candidates. At each domain reduction, a new

LHS is generated (conserving design points

between the new bounds) and a new Kriging is

generated based on this new LHS.

5. Convergence and Stop Criteria: The

optimization is considered to be converged

when the candidates found are stable. However,

there are three stop criteria that can stop the

algorithm: the maximum number of

Ram Krishna Rathore et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 1), February 2014, pp.737-746

 www.ijera.com 740 | P a g e

evaluations, the maximum number of domain

reductions, and the percentage of input ranging.

The workflow of the A-NLPQL optimization

technique is given in figure 2.

Fig. 2 Flowchart of Adaptive NLPQL approach.

VI. ASSESSMENT THROUGH EXAMPLES
Adaptive-NLPQL is a hybrid optimization

method which combines an online LHS (DOE) and

Kriging response surface with the NLPQL algorithm

in a flexible Optimization system. It uses the same

general approach as NLPQL, but extends it by using

the Kriging error predictor to reduce the number of

evaluations needed to local the global optimum.

To illustrate how A-NLPQL optimization works, we

will use six different problems to examine different

functions and apply both the NLPQL and A-NLPQL

optimization methods to the problem. Then, we will

review the results and examine why Adaptive

NLPQL optimization method is better suited to

finding the converged solution for the given

problem.

In this section, we use six numerical examples with

different degrees of difficulty to illustrate the

applicability of the proposed A-NLPQL, compared

to the NLPQL. All of these six examples are

optimizations problems with constraint functions.

As a typical example of my results, we use the

examples, to present a detailed comparison of the

NLPQL, and A-NLPQL, for that the results for the

five numerical examples used in literature and other

one engineering example also. In order to compare

the conventional NLPQL and A-NLPQL, the same

initial population of design points is used for all

experiments for each example. The same settings

are used for all examples.

Number of LHS Initial Samples 110

Number of Screening Samples 1300

Number of Starting Points 110

Maximum Number of Evaluations 300

Maximum Number of Domain

Reductions

10

Percentage of Domain Reductions 0.1

Maximum Number of Candidates 3

Problem 1: The problem is a non-convex analytic

function with two input parameters taken from, Jui-

Yu Wu, 2012
[24]

. The definition of the problem is as

follows:

Minimize f (x1, x2)

Where -3.0  x1, x2  3

And f(x1, x2) =3(1-x1)
2𝒆[−𝒙𝟏

𝟐− 𝒙𝟐+𝟏 𝟐]-10(
𝒙𝟏

𝟓
− 𝒙𝟏

𝟑 −

𝒙𝟐
𝟓)𝒆[−𝒙𝟏

𝟐−𝒙𝟐
𝟐] −

𝟏

𝟑
𝒆[− 𝒙𝟏+𝟏 𝟐−𝒙𝟐

𝟐]

This analytic function has three local maxima, one

local minima, and one universal minimum point at

(0.2282;-1.6256), with a corresponding objective

function value of -6.5511.

Fig. 3 optimization status of NLPQL (Left) and A-

NLPQL (Right)

Fig. 4 NLPQL (left) and A-NLPQL’s (right)

Candidate points of converged solution

In the figure 4 the candidate points of converged

solution are given in NLPQL and A-NLPQL

candidate 1 has been selected which is f(x) -6.5511

for both case the results are same. The Pareto

frontiers from the NLPQL and A-NLPQL,

respectively, are non-convex as shown in Figure 5.

Vs

Vs

Ram Krishna Rathore et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 1), February 2014, pp.737-746

 www.ijera.com 741 | P a g e

Fig. 5 Pareto solutions for NLPQL and A-NLPQL

Figure 5 shows a typical set of Pareto optimal

solutions as obtained from one of the 19 iterations of

the NLPQL and A-NLPQL. The results from A-

NLPQL are in good agreement with the NLPQL.

Figure 5 shows the NumSimCall (number of

simulation calls) for 55 iterations. The results show

that for problem 1, the NumSimCall has been

reduced by 5 iterations using the proposed A-

NLPQL compared to the NLPQL; so the

optimization process was much faster.

Times taken to get a converged solution of the

problem by both the methods, is the other criteria. In

this section both the methods are run with the same

settings and time and number of simulation calls are

compared for the same. Time taken for complete the

converged solution for problem 1 through NLPQL is

21min and through A-NLPQL is 15min.

Problem 2: (Pressure Vessel Design Problem)

Definition
In this section, the engineering problem from Jui-Yu

Wu, 2012
[24]

 has been taken to further test the

performance of the proposed A-NLPQL in solving

problems in a discontinuous search space.

This problem involves four decision variables, four

inequality constraints, and eight boundary

conditions. This problem attempts to minimize the

total cost (f(x)), including cost of materials welding

and forming. A cylindrical vessel is capped at both

ends by hemispherical heads. Four design variables

exist: thickness of the shell x1, thickness of the head

x2, inner radius x3, and length of the cylindrical

section of the vessel, excluding the head x4. The

definition of the problem is as follows:

Minimize

f(x)=0.6224x1x3x4+1.7781x2x3
2
+3.1661x1

2
x4+19.84

x1
2
x3

Subjected to g1(x) = -x1+0.0193x3  0

g2(x) = -x2+0.00954x3  0

g3(x) = -πx2
2
x4-(4/3)πx3

3
+1296000  0

g4(x) = x4-240  0

Where 0<x1, x2<100 and 10<x3, x4<200

Fig. 6 Prob. 2 optimization status of NLPQL (Left)

and A-NLPQL (Right)

Fig. 7 NLPQL (left) and A-NLPQL’s (right)

Candidate points of converged solution of Prob. 2

The best known solution is (x) = (0.193, 45.343, 10,

200), where f (x) = 8333.7 by A-NLPQL. The Pareto

frontiers from NLPQL and A-NLPQL, respectively,

are non-convex as shown in Figure 8.

Fig. 8 Pareto solutions for NLPQL (Left) and A-

NLPQL (Right)

Figure 8 shows a typical set of Pareto optimal

solutions as obtained from one of the 19 iterations of

the NLPQL and A-NLPQL. The results from A-

NLPQL are good as compared with the NLPQL.

Figure 8 shows the NumSimCall (number of

simulation calls) for 30 iterations. The results show

that for problem 2, the NumSimCall has been

reduced by 169 simulation calls and 24 iterations

using the proposed A-NLPQL compared to the

NLPQL; so the optimization process was much

faster. Time taken for complete the converged

solution for problem 2 through NLPQL is 25min

and through A-NLPQL is 10min.

Problem 3: Definition

This standard problem is taken from Yong Wang et.

al, 2007
[23]

. The problem formulation has been given

as:

Maximize f(x) =x1
2
+(x2-1)

2

subject to g(x) =x2-x1
2
 0

where -1  x1, x2  1

The optimum solution is (x) = (±1/√2, 1/2), where f

(x) = 0.75. Vs

Vs

Ram Krishna Rathore et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 1), February 2014, pp.737-746

 www.ijera.com 742 | P a g e

Fig. 9 Prob.3 optimization status of NLPQL (Left)

and A-NLPQL (Right)

Fig. 10 NLPQL (left) and A-NLPQL’s (right)

Candidate points of converged solution of Prob. 3

The Pareto frontiers from NLPQL and A-NLPQL,

respectively, are non-convex as shown in Figure 11.

Fig. 11 Pareto solutions for NLPQL (Left) and A-

NLPQL (Right) of prob.3

Figure 11 shows a typical set of Pareto optimal

solutions as obtained from the NLPQL and A-

NLPQL. The results from A-NLPQL are good as

compared with the NLPQL, that is f(x) = 0.75.

Figure 11 shows the NumSimCall (number of

simulation calls) for 30 iterations. The results show

that for problem 3, the NumSimCall has been

reduced by 12 simulation calls and 04 iterations

using the proposed A-NLPQL compared to the

NLPQL; so the optimization process was much

faster. Time taken for complete the converged

solution for problem 3 through NLPQL is 10min

and through A-NLPQL is 5min.

Problem 4: Definition

This standard problem is taken from Yong Wang et.

al, 2007
[23]

. The problem formulation has been given

as:

Minimize f(x) = (x1-10)
3
+(x2-20)

3

Subject to g1(x) = -(x1-5)
2
-(x2-5)

2
+100  0

g2(x) = (x1-6)
2
-(x2-5)

2
-82.81  0

Where 13  x1  100 and 0  x2  100

For the above given problem the optimization status

are as shown below:

Fig. 12 Prob.4 optimization status of NLPQL (Left)

and A-NLPQL (Right)

Fig. 13 NLPQL (left) and A-NLPQL (right)

Candidate points of converged solution of Prob.4

The Pareto frontiers from NLPQL and A-NLPQL,

respectively, are non-convex as shown in Figure 14.

Fig. 14 Pareto solutions for NLPQL (Left) and A-

NLPQL (Right) of Prob.4

Figure 14 shows the optimum solution calculated

with NLPQL is x = (13, 20.361), where f (x) =

27.047 and with A-NLPQL x = (13, 17.806), where f

(x) = 16.442. Both constraints are active. Figure 14

shows a typical set of Pareto optimal solutions as

obtained from the NLPQL and A-NLPQL. Figure

14 shows the NumSimCall (number of simulation

calls) for 30 iterations. The results show that, for

problem 4, the NumSimCall has been reduced by 13

simulation calls and 06 iterations using the proposed

A-NLPQL compared to the NLPQL; so the

optimization process was much faster. Time taken

for complete the converged solution for problem 4

through NLPQL is 12min and through A-NLPQL is

7min.

Problem 5: Definition

This problem is taken from Hira and Gupta, 2011
[41]

.

The problem formulation has been given as:

Maximize f(x) =2x1+3x2

Subjected to g1(x) =x1+x2 30

g2(x) =x1-x2 π 0

Vs

Vs

Ram Krishna Rathore et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 1), February 2014, pp.737-746

 www.ijera.com 743 | P a g e

where 0  x1  20 and 3  x2  12

For the above problem the optimization status are as

shown below:

Fig. 15 Prob.5 optimization status of NLPQL (Left)

and A-NLPQL (Right)

Fig. 16 NLPQL (left) and A-NLPQL (right)

Candidate points of converged solution of Prob.5

The Pareto frontiers from NLPQL and A-NLPQL,

respectively, are non-convex as shown in Figure 17.

Fig. 17 Prob.5 Pareto solutions for NLPQL (Left)

and A-NLPQL (Right)

Figure 16 shows the optimum solution calculated

with NLPQL and A-NLPQL, which is (equal) x =

(18, 12), where f (x) = 72. Both constraints are

active. Figure 17 shows a typical set of Pareto

optimal solutions as obtained from the NLPQL and

A-NLPQL. Figure 17 shows the NumSimCall

(number of simulation calls) for 30 iterations. The

results show that, for problem 5, the NumSimCall

has been reduced by 02 simulation calls and 03

iterations using the proposed A-NLPQL compared

to the NLPQL; so the optimization process was

much faster. Time taken for complete the converged

solution for problem 5 through NLPQL is 03min

and through A-NLPQL is 02min.

Problem 6: Definition (TP 4)
This example is a relative standard example taken

from Jui-Yu Wu, 2012
[24]

. TP 4 involves 13

decision variables, nine inequality constraints, and

26 boundary conditions, as follows:

Minimize f(x) = 5 𝒙𝒏 − 𝟓𝟒
𝒏=𝟏 𝒙𝒏

𝟐 − 𝒙𝒏
𝟏𝟑
𝒏=𝟓

𝟒
𝒏=𝟏

Subject to g1(x) = 2x1 + 2x2 + x10 + x11 − 10≤ 0,

 g2(x) = 2x1 + 2x3 + x10 + x12 − 10≤ 0,

 g3(x) = 2x2 + 2x3 + x11 + x12 − 10≤ 0,

 g4(x) = - 8x1 + x10≤ 0,

g5(x) = - 8x2 + x11≤ 0,

g6(x) = −8x3 + x12≤ 0,

g7(x) = −2x4 − x5 + x10≤ 0,

g8(x) = −2x6 − x7 + x11≤ 0,

g9(x) = −2x8 – x9 + x12≤ 0

Where 0 ≤ xn ≤ 1, n = 1, 2, . . . , 9,

0 ≤ xn ≤ 100, n = 10, 11, 12,

0 ≤ x13 ≤ 1

For the above given problem the optimization status

are as shown below:

Fig. 18 Porb.6 optimization status of NLPQL (Left)

and A-NLPQL (Right)

Fig. 19 NLPQL (Upper) and A-NLPQL (Lower)

Candidates of converged solution of Prob.6

Vs

Ram Krishna Rathore et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 1), February 2014, pp.737-746

 www.ijera.com 744 | P a g e

The Pareto frontiers from NLPQL and A-NLPQL,

respectively, are non-convex as shown in Figure 20.

Fig. 20 Prob.6 Pareto solutions for NLPQL (Left)

and A-NLPQL (Right)

Figure 19 shows the optimum solution calculated

with NLPQL, where NLPQL is not able to satisfy

g1(x) and g7(x) constraints with f(x) = -19 and A-

NLPQL x = (1,1,1,1,1,1,1,1,1,3,3,3,1), where f(x) = -

19 with all constraints activated. Both constraints

are active. Figure 20 shows a typical set of Pareto

optimal solutions as obtained from the NLPQL and

A-NLPQL. Figure 20 shows the NumSimCall

(number of simulation calls) for 30 iterations. The

results show that, for problem 6, the NumSimCall

has been reduced by 71 simulation calls and 12

iterations using the proposed A-NLPQL compared

to the NLPQL; so the optimization process was

much faster. Time taken for complete the converged

solution for problem 6 through NLPQL is 37min

and through A-NLPQL is 13min.

5.1 Assessment of NLPQL and A-NLPQL

The obtained results for these six test examples

show that the number of simulation calls

(NumSimCall) used in the A-NLPQL is significantly

fewer than the NLPQL, while the obtained Pareto

solution for NLPQL method is comparable.

Furthermore, as shown in Table 1, the A-NLPQL

has smaller STD of the NumSimCall (based on 20

iteration runs) than the NLPQL, which indicates that

compared to the NLPQL and the A-NLPQL has a

more stable performance on the reduction of the

NumSimCall.

Table 1 Statistics for the NumSimCall

S.

No

Example NLPQL A-NLPQL

Mean STD Mean STD

1 All Six

examples

46.5 107.75 38.5 72.45

Based on the data in Table 2, the reduction of the

NumSimCall for each example is calculated based

on the mean and STD value. This calculation

performing for the A-NLPQL over the NLPQL is

also shown in Table 2.

Table 2 Reduction in the NumSimCall,

NumIterations & Time required

As shown in Table 2, on the average, the proposed

A-NLPQL can save about 41% in the NumSimCall,

81% in the NumIterations and 52% time over the

NLPQL. It is observed that the A-NLPQL

outperforms the NLPQL and is more stable than the

NLPQL, in terms of the number of simulation calls,

for these six examples.

VII. CONCLUSION
We discussed about the various individual

optimization and metamodeling techniques, by

means of which an improved LHS and kriging

assisted NLPQL technique was developed to

enhance the computational efficiency of a single-

objective optimization. In this project we proposed

an enhanced NLPQL, called Adaptive Non Linear

Programming Lagrangian (A-NLPQL) in which the

online LHS and kriging-based metamodel is inter

connected within a NLPQL.

NLPQL can add accuracy to the response surface-

based approach, but is highly dependent on the

quality of the starting point. A-NLPQL is an

adaptive method that combines a DOE (LHS), an

internal response surface (kriging), domain

reduction and error prediction. It provides both

accuracy and speed without needing prior results to

initialize the optimization, and allows you to

balance your available time and resources with your

desired level of accuracy. While a Response Surface

Optimization or the NLPQL algorithm may be

sufficient for exploring problems that are convex or

smooth, the A-NLPQL algorithm is a better

optimization choice when you are not already very

familiar with your problem.

The results show that, on the average. A-NLPQL

outperforms both a conventional NLPQL and our

recently developed A-NLPQL and has higher

stability in terms of the number of simulation calls

used in the optimization.

REFERENCES
[1] Schittkowski, K., “NLPQL: A Fortran

subroutine for solving constrained nonlinear

programming problems,” Annals of Operations

Research, Vol. 5, pp. 485-500, 1985.

[2] Farina, M., 2001, “A Minimal Cost Hybrid

Strategy for Pareto Optimal Front

Approximation,” Evolutionary Optimization,

an international journal on the internet, 3(1),

pp. 41–52 _available online at www.jeo.org_.

Ram Krishna Rathore et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 1), February 2014, pp.737-746

 www.ijera.com 745 | P a g e

[3] Wyss, G. D., and Jorgensen, K. H., 1998. "A

User s Guide to LHS: Sandia's Latin

Hypercube Sampling Software," Sandia

National Laboratories Technical Report

SAND98-0210, Albuquerque, NM.

[4] Hailong You, Xi''an, Maofeng Yang, Dan

Wang, Jia, Xinzhang, “Kriging Model

combined with latin hypercube sampling for

surrogate modeling of analog integrated circuit

performance”, Quality of Electronic Design,

2009. ISQED 2009. Quality Electronic Design,

Page(s): 554 - 558

[5] Papadrakakis, M., Lagaros, N., and

Tsompanakis, Y., 1999, “Optimization of

Large-Scale 3D Trusses Using Evolution

Strategies and Neural Networks,” Int. J. Space

Struct., 14(3), pp. 211–223.

[6] Hong, Y.-S., Lee, H., and Tahk, M.-J., 2003,

“Acceleration of the Convergence Speed of

Evolutionary Algorithms Using Multilayer

Neural Networks,” Eng. Optimiz., 35(1), pp.

91–102.

[7] Mansour Keramat and Richard Kielbasa,

“Latin Hypercube Sampling Monte Carlo

Estimation of Average Quality Index for

Integrated Circuits,” Analog Integrated

Circuits And Signal Processing, vol. 14, no.

1/2, pp. 131-142, 1997.

[8] Jones, D., Schonlau, M., and W. Welch, 1998.

"Efficient Global Optimization of Expensive

Black-Box Functions," Journal of Global

Optimization, Vol. 13, pp. 455-492.

[9] Hart, W. E., Giunta, A. A., Salinger, A. G.,

and van Bloemen Waanders, B. G., 2001. "An

Overview of the Adaptive Pattern Search

Algorithm and its Application to Engineering

Optimization Problems," abstract in

Proceedings of the McMaster Optimization

Conference: Theory and Applications,

McMaster University, Hamilton, Ontario,

Canada

[10] Chen, J.-H., Goldberg, D. E., Ho, S.-Y., and

Sastry, K., 2002, “Fitness Inheritance in

Single-Objective Optimization,” Proceedings

of the Genetic and Evolutionary Computation

Conference, New York, July 9–13, Morgan

Kaufmann, New York.

[11] Smith, R., Dike, B., and Stegmann, S., 1995,

“Fitness Inheritance in Genetic Algorithms,”

Proceedings of the ACM Symposiums on

Applied Computing, ACM, Nashville, TN,

February 26–28, pp. 345–350.

[12] Jin, Y., Olhofer, M., and Sendhoff, B., 2001,

“Managing Approximate Models in

Evolutionary Aerodynamic Design

Optimization,” Proceedings of IEEE Congress

on Evolutionary Computation, Vol. 1, pp. 592–

599.

[13] Jin, Y., Olhofer, M., and Sendhoff, B., 2002,

“A Framework for Evolutionary Optimization

With Approximate Fitness Functions,” IEEE

Trans. Evol. Comput., 6(5), pp. 48–494.

[14] Nain, P. K. S., and Deb, K., 2003,

“Computationally Effective Search and

Optimization Procedure Using Coarse to Fine

Approximations,” Proceedings of the

Congress on Evolutionary Computation (CEC-

2003), Canberra, Australia, pp. 2081–2088.

[15] Nair, P. B., and Keane, A. J., 1998,

“Combining Approximation Concepts With

Genetic Algorithm-based Structural

Optimization Procedures,” AIAA/ASME/

ASCE/AHS/ASC Structures, Structural

Dynamics, and Materials Conference and

Exhibit, 39th, and AIAA/ASME/AHS Adaptive

Structures Forum, Long Beach, CA, Apr. 20–

23, Collection of Technical Papers, Pt. 2, A98-

25092 06-39, AIAA-1998-1912.

[16] Oduguwa, V., and Roy, R., 2002, “Single-

Objective Optimization of Rolling Rod

Product Design Using Meta-Modeling

Approach,” Proceedings of the Genetic and

Evolutionary Computation Conference, New

York, July 9–13, Morgan Kaufmann, New

York, pp. 1164–1171.

[17] Jin, Y., 2005, “A Comprehensive Survey of

Fitness Approximation in Evolutionary

Computation,” Soft Comput., 9(1), pp. 3–12.

[18] Wang, G. G., and Shan, S., 2007, “Review of

Metamodeling Techniques in Support of

Engineering Design Optimization,” ASME J.

Mech. Des., 129(4), pp. 370–380.

[19] Simpson, T. W., Peplinski, J., Koch, P. N., and

Allen, J. K., 2001, “Metamodels for

Computer-based Engineering Design: Survey

and Recommendations,” Eng. Comput., 17(2),

pp. 129–150.

[20] Simpson, T. W., Booker, A. J., Ghosh, D.,

Giunta, A. A., Koch, P. N., and Yang, R.-J.,

2004, “Approximation Methods in

Multidisciplinary Analysis and Optimization:

A Panel Discussion,” Struct. Multidiscip.

Optim., 27, pp. 302–313.

[21] Wilson, B., Cappelleri, D., Frecker, M., and

Simpson, T. W., 2001, “Efficient Pareto

Frontier Exploration Using Surrogate

Approximations,” Optim. Eng., 2, pp. 31–50.

[22] Koch, P. N., Wujek, B. A., Golovidov, O., and

Simpson, T. W., 2002, “Facilitating

Probabilistic Multidisciplinary Design

Optimization Using Kriging Approximation

Models,” Proceedings of the Ninth

AIAA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, Atlanta, GA, Sept.

4–6, AIAA 2002-5415.

[23] YongWang, Hui LIU, Zixing Cai and Yuren

Zhou, “An orthogonal design based

constrained evolutionary optimization

algorithm”, Taylor & Francis, Engineering

Optimization. Vol. 39, No. 6, September 2007,

715–736

Ram Krishna Rathore et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 2(Version 1), February 2014, pp.737-746

 www.ijera.com 746 | P a g e

[24] Jui-Yu Wu, “Solving Constrained Global

Optimization Problems by Using Hybrid

Evolutionary Computing and Artificial Life

Approaches” Hindawi Publishing

Corporation, Mathematical Problems in

Engineering, Volume 2012, Article ID

841410, 36 pages, doi:10.1155/2012/841410

[25] Kyoungwoo Park, Park-Kyoun Oh, Hyo-Jae

Lim, The application of the CFD and Kriging

method to an optimization of heat sink,

International Journal of Heat and Mass

Transfer 49 (2006) 3439–3447,

[26] R. Noorossana, Sam Davanloo Tajbakhsh and

A. Saghaei, “An artificial neural network

approach to Single-response optimization”,

The International Journal of Advanced

Manufacturing Technology, Volume 40,

Numbers 11-12, 1227-1238, DOI:

10.1007/s00170-008-1423-7 (2008)

[27] M. Oudjenea, L. Ben-Ayed, A. Delam´ezi`erb,

J.-L. Batoz, “Shape optimization of clinching

tools using the response surface methodology

with Moving Least-Square approximation”,

journal of materials processing technology

209 (2009) 289–296

[28] Sangeeta Yadav , K. K. Pathak, Rajesh

Shrivastava, Shape Optimization of Cantilever

Beams Using Neural Network, Applied

Mathematical Sciences, Vol. 4, 2010, no. 32,

1563 – 1572

[29] M. Ramu, V. Prabhu Raja, P. R. Thyla, M.

Gunaseelan, “Design Optimization of

Complex Structures Using Metamodels”,

Jordan Journal of Mechanical and Industrial

Engineering, Vol. 4, Number 5, November

2010, ISSN 1995-6665, p.p. 653 - 664

[30] Muromaki, T.; Hanahara, K.; Nishimura, T.;

Tada, Y.; Kuroda, S.; Fukui, T., “Single-

Objective Shape Design of Crane-Hook

Taking Account of Practical Requirement”,

Institute of Materials, London England, 2010,

ISBN No- 1861250045, AIP Conf. Proc. /

Volume 1233 / Issue, pp. 632-637

[31] Rashmi Uddanwadiker, Stress Analysis of

Crane Hook and Validation by Photo-

Elasticity, Scientific research, vol. 3, p.p.935-

941, 2011

[32] Ossi Heinonen & Sami Pajunen, “Optimal

design of stiffened plate using metamodeling

techniques”. Rakenteiden Mekaniikka (Journal

of Structural Mechanics) (2011), Vol. 44, No

3, 2011, pp. 218-230

[33] Daryoush Safarzadeh, Daryoush Safarzadeh,

Shamsuddin Sulaiman, Faieza Abdul Aziz,

Desa Bin Ahmad and Gholam Hossein

Majzoobi,“An investigation into the hook

dynamics and effect of hook parameters on the

sway angles in hydraulic cranes”, Scientific

Research and Essays, Vol. 6(6), pp. 1303-

1316, 18 March, 2011

[34] Wilson, B., Cappelleri, D., Frecker, M., and

Simpson, T. W., 2001, “Efficient Pareto

Frontier Exploration Using Surrogate

Approximations,” Optim. Eng., 2, pp. 31–50.

[35] Shapour Azar, Brian J. Reynolds, Sanjay

Narayanan, “comparison of two single

objective optimization techniques with and

within Genetic algorithms,” Proceedings of the

1999 ASME Design Engineering Technical

Conferences September 12-15, 1999, Las

Vegas, Nevada, DETC99/DAC-8584

[36] Zhangjun Huang, Mingxu Ma and Chengen

Wang, “An Archived Differential Evolution

Algorithm for Constrained Global

Optimization”, International Conference on

Smart Manufacturing Application, April. 9-11,

2008 in KINTEX, Gyeonggi-do, Korea

[37] Kirsch, U., 1981, Optimal Structural Design,

McGraw-Hill Co., New York.

[38] Myers RH, Montgomery DC. Response

surface methodology. New York: John Wiley

& Sons Inc.; 1995.

[39] J. W. Dally and W. F. Riley, “Experimental

Stress analysis,” Springer Publisher, New

York, 1993.

[40] P.K. Gupta and D.S. Hira, “Problems in

Operations Research: Principles and

Solutions”, S. Chand & company LTD; 2011,

ISBN:81-219-0281-9.

[41] Belegundu, Ashok D and Chandrupatla,

Tirupathi R. Optimization Concepts and

Applications in Engineering. s. l.: Pearson

Education, 2005.

[42] H. A. Rothbart, “Mechanical Design

Handbook: Measurement, Analysis, and

Control of Dynamic Systems,” McGraw-Hill,

Columbus, 2006.

[43] J. Sacks, S. B. Schiller, W. J. Welch, "Design

for computer experiments". Technometrics,

1989, Vol. 31, No. 1, pp. 41-47.

