
Ram Krishna Rathore et al Int. Journal of Engineering Research and Applications       www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 2( Version 1), February 2014, pp.737-746 

 www.ijera.com                                                                                                                              737 | P a g e  

 

An Adaptive Approach for Single Objective Optimization 

 

Ram Krishna Rathore *, Kaushal Sharma **, Amit Sarda*** 
*Assistant Professor in the Department of Mechanical Engineering at CCET, Bhilai (C.G), India 

** Engineer- Inspection, RITES Ltd. India,  

*** Associate Professor in the Department of Mechanical Engineering at CCET, Bhilai, 

 

ABSTRACT 
The use of evolutionary computation in the solution of optimization problems of non-linear type is not new. 

Many such problems having single or multiple objectives are now routinely solved using different evolutionary 

methodologies. Through this project, I am delighted to share some recent advances in the area of evolutionary 

computing. Some critical issues, such as design of an efficient evolutionary algorithm, an efficient constraint 

handling procedure, scalability issue of algorithms are dealt in this project. The discussion of the topics and 

subsequent engineering and numerical case studies presented in this project should be useful to non-linear single 

objective problems alike. Nonlinear Programming by Quadratic Lagrangian (NLPQL) techniques are 

extensively used for solving realistic optimization problems, particularly in structural mechanics. The common 

arrangement of NLPQL techniques is briefly discussed and it is shown how these techniques can be tailored for 

distributed computing. Still, NLPQL techniques are responsive topic to errors in parameters and gradient 

evaluations. Typically they take more time to compute the converged solution with more number of simulation 

calls. In case of noisy function values, a radical enhancement of the performance can be gained through 

Adaptive Nonlinear Programming by Quadratic Lagrangian (A-NLPQL) compared to the version with 

conventional NLPQL. Numerical results are presented for a set of six standard test examples. 

Keywords - NLPQL, Single Objective Optimization, nonlinear programming, distributed computing

 

I. INTRODUCTION 
Several types of optimization techniques 

are existed to solve diverse problems. Even though, 

for designers to employ optimization at their place 

of work they require to comprehend the hypothesis, 

the theory and the procedures for these techniques. 

This is due to realistic problems might necessitate 

altering algorithmic parameters and constant scaling 

and adjusting the available techniques to fulfills the 

definite application. Especially, the user might have 

to practice various optimization techniques to locate 

one that can be effectively applied. The definitive 

objective of every such choice is either to minimize 

the attempt required or maximize the required 

advantage. Because also of these objectives in any 

physical circumstances can be uttered as a function 

of definite design variables, optimization might also 

be distinct as the method of finding the 

circumstances that provide the maximum or 

minimum value of a function. 

It is remarkable to remind that the key growths in 

the field of arithmetic techniques of unrestrained 

optimization have been prepared in the United 

Kingdom just in the l960s. The improvement of the 

simplex technique by Dantzig in 1947 for linear 

programming problems and the annunciation of the 

principle of optimality in 1957 by Bellman for 

dynamic programming problems lined the direction 

for progress of the techniques of constrained  

 

 

optimization Work by Kuhn and Tucker in 1951 on 

the essential and adequacy circumstances for the 

optimal solution of programming problems laid the 

foundations for a great deal of afterwards research 

in nonlinear programming. The offerings of 

Zoutendijk and Rosen to nonlinear programming in 

the early 1960s have been very important. Even 

though no particular method has been establish to be 

communally suitable for nonlinear programming 

examples, effort of Carroll and Fiacco and 

McCormick authorized lots of intricate problems to 

be solved by means of the well-known methods of 

unconstrained optimization Geometric programming 

was created in the l960s by Duffin, Zener, and 

Peterson. Gomoiy did revolutionary work in integer 

programming, one of the greater stimulating and 

rapidly growing areas of optimization. The reason 

for this is that usually real-world applications fall 

under this class of problems. Dantzig and Charnes 

and Cooper created stochastic programming 

methods and resolved problems by assuming design 

parameters to be autonomous and usually 

distributed. The need to optimize more than single 

objective or goal while fulfilling the physical 

boundaries led to the growth of multi-disciplinary 

programming techniques. Goal programming is a 

famous method for solving precise types of single 

objective optimization problems. The goal 

programming was initially projected for linear 
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problems by Charnes and Cooper in 1961. The 

basics of game hypothesis were laid by von 

Neumann in 1928 and ever since then the method 

has been useful to answer numerous mathematical 

economics and military problems. Simply in the last 

few years has game theory been useful to solve 

engineering design problems. Genetic algorithms, 

Simulated annealing, and neural network methods 

signify a new class of mathematical programming 

methods that have come into fame during the last 

decade.
 [35]

 

A significant solution with relevance to the Non 

linear programming based optimization methods to 

engineering fields has been the elevated 

computational cost because of the huge amount of 

simulation calls necessary for these techniques
[1]

. A 

general approach to decrease the computational 

attempt for such optimization techniques when 

integrated with simulation models is to use 

metamodeling techniques. Researchers have been 

quite active in developing models and methods that 

improve the efficiency of the NLPQLs in terms of 

the number of simulation calls. Some of these 

approaches are based on fitness approximations in 

which neural network 
[3–5]

, response surface 
[6]

, 

Kriging 
[7]

, and radial basis function 
[8]

 methods are 

used for metamodeling. Others use fitness 

inheritance approaches 
[9,10] 

in which the fitness of 

an offspring is inherited from its parents. A 

comprehensive review of fitness approximation and 

metamodeling approaches can be found in Ref. [16] 

and Refs. [17–19] respectively. The fitness 

approximation methods are of two types: off-line 

(non-adaptive) and on-line (adaptive). In off-line 

techniques, metamodels are created independently 

and earlier at the beginning of an optimization 

algorithm 
[4,6–8,20,21]

. The deficiency of the offline 

techniques is that it is complex to attain both an 

excellent reliability metamodel above the complete 

design space and at the same time keep a small 

number of simulation calls 
[18,20]

. The on-line 

techniques utilize a group of metamodeling with the 

simulation model at the optimization process while 

adaptively enhancing the metamodel 
[2,3,5,11–14]

. Most 

of the on-line techniques created until now are 

focused on single-objective optimization. 

The study on how to implant metamodeling inside 

Non Linear Programming by Quadratic Lagrangian 

(NLPQL) remains sparse. In on-line techniques, the 

primary phases of the NLPQL, coarse design points 

are formed with metamodels are created. These 

metamodels are then steadily enhanced as further 

simulation data become accessible. Some of this 

type of techniques employs regression 

metamodeling, which is well-known to necessitate a 

huge number of simulation calls. Another uncertain 

problem in the present adaptive techniques is how to 

impartially choose when to switch to the metamodel 

in its place of using the simulation in the 

optimization. Typically, the toggling among the 

definite simulation model and the consequent 

metamodel is intuitively decided. Furthermore, the 

reliability of the metamodel may vary extensively in 

the optimization procedure and this can cause 

fluctuation. 

I employ a goal measure to decide whether a 

simulation model or its Kriging metamodel 

substitution have to be used to assess design points. 

The projected decisive factor is created on the basis 

of the metamodels expected error, which can be 

simply attained as a consequence from Kriging and 

Latin Hypercube Sampling. In the anticipated 

technique, the Kriging metamodels for objective and 

restraint functions are constructed and adaptively 

enhanced inside a NLPQL by means of Latin 

Hypercube Sampling technique (as A-NLPQL or 

Adaptive-Non Linear Programming by Quadratic 

Lagrangian). The technique is universal and needs 

no extra simulation call previous to the beginning of 

the optimization process to construct the Kriging 

metamodels. These present results demonstrate that 

the projected technique decides the problem 

frequently reported in the literature, that is, the 

metamodel possibly of small reliability and that it 

may create false optima. 

 

II. PROBLEMS IDENTIFICATION 
Now days there are so many techniques, 

which are working on optimization technique; they 

take lots of iterations and population creation. The 

common issues appear with the working of 

conventional or simple single-objective algorithms 

are as follows: 

1. Simulation calls counts are more in case of 

conventional optimization techniques. 

2. It requires a control of design of experiment for 

the initial population creation, which has to deal 

with the efficiency of the various algorithm and 

design points generation.  

3. Time required for converging the solutions and 

simulations are more. 

4. A Response Surface Optimization system draws 

its information from its own Response Surface 

component, and so is dependent on the quality 

of the response surface.  

On the basis of above listed problem the algorithms 

are evaluated and compared to show the usability. 

 

III. OBJECTIVE 
Although kriging’s and NLPQLs have been 

extensively used in engineering design optimization, 

the significant confront still faced by designers in 

using these methods is their high computational cost 

due to the population-based nature of these methods. 

In particular, a number of techniques incorporating 

metamodeling with NLPQL based methods have 
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been reported in the literature [Hailong You, 2009]. 

A metamodel means a simplified approximation of 

the original simulation model. 

The objective of Research Thrust is to develop an 

approach to measure the uncertainty in the 

prediction of responses from the metamodels so that 

the risk of generating false optima can be reduced. 

The goal is to develop a NLPQL that can converge 

to the Pareto front using significantly fewer number 

of simulation calls compared to a conventional 

NLPQL. 

 

IV. ASSUMPTIONS 
The In generating the robust optimization 

approach, we make the following assumptions: 

 The range of parameter uncertainty is known as an 

interval (or several discrete intervals) a priori. 

Interval uncertainty is not required to be 

continuous. 

 An acceptable variation range for each objective 

function in the optimization, 

 Simulations used in optimization problems are 

considered as “black boxes” that will provide the 

identical responses (outputs) when the same inputs 

are supplied. 

 Design variables and/or parameters in 

optimization problems can be continuous-discrete. 

 

V. ADAPTIVE NON-LINEAR PROGRAMMING BY 

QUADRATIC LAGRANGIAN (A-NLPQL) 

APPROACH 
Adaptive–Non linear Programming by 

Quadratic lagrangian (A-NLPQL) is a mathematical 

optimization method that combines a Latin 

Hypercube Sampling (LHS) Design of Experiments, 

a Kriging response surface, and the NLPQL 

optimization algorithm. It is a gradient-based 

algorithm based on a response surface which 

provides a refined, global, optimized result. 

Adaptive-NLPQL Single-Objective optimization 

supports a single objective, multiple constraints, and 

is limited to continuous parameters. It is available 

only for Direct Optimization systems.  

Like the NLPQL method, this method solves 

constrained nonlinear programming problems of the 

form:  

Minimize:  F = f({x}) 

Subject to:  gk({x})  0  k = 1, . . . , K 

hl ({x})  0  l = 1, . . . , L 

where   { xL}  {x}  {xU} 

The purpose is to refine and reduce the domain 

intelligently and automatically to provide the global 

maxima.  

 

A-NLPQL Steps  

1. LHS Sampling: Latin Hypercube Sampling 

(LHS) is used for the Kriging construction. 

When a new LHS is generated after a domain 

reduction, all the existing design points between 

the new bounds are kept. In the two-dimensional 

example below, only three new design points are 

evaluated because three old ones are kept.  

 

 
Fig. 1 LHS sampling 

 

2. Kriging Generation: A response surface is 

created for each output, based on the current 

LHS and consequently on the current domain 

bounds.  

3. NLPQL Algorithm: NLPQL is run on the 

current Kriging response surface to find 

potential candidates. A few NLPQL processes 

are run at the same time, beginning with 

different starting points, and consequently, 

giving different candidates.  

4. Candidate Point Validation: All the obtained 

candidates are either validated or not, based on 

the Kriging error predictor. The candidate point 

is checked to see if further refinement of the 

Kriging surface will change the selection of this 

point. A candidate is considered as acceptable if 

there aren’t any points, according to this error 

prediction, that call it into question. If the 

quality of the candidate is called into question, 

the domain bounds are reduced; otherwise, the 

candidate is calculated as a verification point.  

 Refinement Point Creation (If the selection 

will not be changed): When a new verification 

point is calculated, it is inserted in the current 

Kriging as a refinement point and the NLPQL 

process is restarted.  

 Domain Reduction (If the selection will be 

changed): When candidates are validated, new 

domain bounds must be calculated. If all of the 

candidates are in the same zone, the bounds are 

reduced, centered on the candidates. Otherwise, 

the bounds are reduced as an inclusive box of 

all candidates. At each domain reduction, a new 

LHS is generated (conserving design points 

between the new bounds) and a new Kriging is 

generated based on this new LHS.  

5. Convergence and Stop Criteria: The 

optimization is considered to be converged 

when the candidates found are stable. However, 

there are three stop criteria that can stop the 

algorithm: the maximum number of 
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evaluations, the maximum number of domain 

reductions, and the percentage of input ranging.  

The workflow of the A-NLPQL optimization 

technique is given in figure 2. 

 

 
Fig. 2 Flowchart of Adaptive NLPQL approach. 

 

VI. ASSESSMENT THROUGH EXAMPLES 
Adaptive-NLPQL is a hybrid optimization 

method which combines an online LHS (DOE) and 

Kriging response surface with the NLPQL algorithm 

in a flexible Optimization system.  It uses the same 

general approach as NLPQL, but extends it by using 

the Kriging error predictor to reduce the number of 

evaluations needed to local the global optimum. 

To illustrate how A-NLPQL optimization works, we 

will use six different problems to examine different 

functions and apply both the NLPQL and A-NLPQL 

optimization methods to the problem. Then, we will 

review the results and examine why Adaptive 

NLPQL optimization method is better suited to 

finding the converged solution for the given 

problem. 

In this section, we use six numerical examples with 

different degrees of difficulty to illustrate the 

applicability of the proposed A-NLPQL, compared 

to the NLPQL. All of these six examples are 

optimizations problems with constraint functions. 

As a typical example of my results, we use the 

examples, to present a detailed comparison of the 

NLPQL, and A-NLPQL, for that the results for the 

five numerical examples used in literature and other 

one engineering example also. In order to compare 

the conventional NLPQL and A-NLPQL, the same 

initial population of design points is used for all 

experiments for each example. The same settings 

are used for all examples.  

Number of LHS Initial Samples 110 

Number of Screening Samples 1300 

Number of Starting Points 110 

Maximum Number of Evaluations 300 

Maximum Number of Domain 

Reductions 

10 

Percentage of Domain Reductions 0.1 

Maximum Number of Candidates 3 

Problem 1: The problem is a non-convex analytic 

function with two input parameters taken from, Jui-

Yu Wu, 2012
[24]

. The definition of the problem is as 

follows: 

Minimize f (x1, x2) 

Where -3.0  x1, x2  3  

And  f(x1, x2) =3(1-x1)
2𝒆[−𝒙𝟏

𝟐− 𝒙𝟐+𝟏 𝟐]-10(
𝒙𝟏

𝟓
− 𝒙𝟏

𝟑 −

𝒙𝟐
𝟓)𝒆[−𝒙𝟏

𝟐−𝒙𝟐
𝟐] −

𝟏

𝟑
𝒆[− 𝒙𝟏+𝟏 𝟐−𝒙𝟐

𝟐] 

This analytic function has three local maxima, one 

local minima, and one universal minimum point at 

(0.2282;-1.6256), with a corresponding objective 

function value of -6.5511. 

 

 
Fig. 3 optimization status of NLPQL (Left) and A-

NLPQL (Right) 

 

 
Fig. 4 NLPQL (left) and A-NLPQL’s (right)  

 

Candidate points of converged solution 

In the figure 4 the candidate points of converged 

solution are given in NLPQL and A-NLPQL 

candidate 1 has been selected which is f(x) -6.5511 

for both case the results are same. The Pareto 

frontiers from the NLPQL and A-NLPQL, 

respectively, are non-convex as shown in Figure 5.  

Vs 

Vs 
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Fig. 5 Pareto solutions for NLPQL and A-NLPQL 

 

Figure 5 shows a typical set of Pareto optimal 

solutions as obtained from one of the 19 iterations of 

the NLPQL and A-NLPQL. The results from A-

NLPQL are in good agreement with the NLPQL. 

Figure 5 shows the NumSimCall (number of 

simulation calls) for 55 iterations. The results show 

that for problem 1, the NumSimCall has been 

reduced by 5 iterations using the proposed A-

NLPQL compared to the NLPQL; so the 

optimization process was much faster. 

Times taken to get a converged solution of the 

problem by both the methods, is the other criteria. In 

this section both the methods are run with the same 

settings and time and number of simulation calls are 

compared for the same. Time taken for complete the 

converged solution for problem 1 through NLPQL is 

21min and through A-NLPQL is 15min. 

 

Problem 2: (Pressure Vessel Design Problem) 

Definition 
In this section, the engineering problem from Jui-Yu 

Wu, 2012
[24]

 has been taken to further test the 

performance of the proposed A-NLPQL in solving 

problems in a discontinuous search space. 

This problem involves four decision variables, four 

inequality constraints, and eight boundary 

conditions. This problem attempts to minimize the 

total cost (f(x)), including cost of materials welding 

and forming. A cylindrical vessel is capped at both 

ends by hemispherical heads. Four design variables 

exist: thickness of the shell x1, thickness of the head 

x2, inner radius x3, and length of the cylindrical 

section of the vessel, excluding the head x4. The 

definition of the problem is as follows: 

 

Minimize  

f(x)=0.6224x1x3x4+1.7781x2x3
2
+3.1661x1

2
x4+19.84

x1
2
x3 

Subjected to  g1(x) = -x1+0.0193x3  0 

g2(x) = -x2+0.00954x3  0 

g3(x) = -πx2
2
x4-(4/3)πx3

3
+1296000  0 

g4(x) = x4-240  0 

Where  0<x1, x2<100 and 10<x3, x4<200 

 

Fig. 6 Prob. 2 optimization status of NLPQL (Left) 

and A-NLPQL (Right) 

 

 
Fig. 7 NLPQL (left) and A-NLPQL’s (right) 

Candidate points of converged solution of Prob. 2 

The best known solution is (x) = (0.193, 45.343, 10, 

200), where f (x) = 8333.7 by A-NLPQL. The Pareto 

frontiers from NLPQL and A-NLPQL, respectively, 

are non-convex as shown in Figure 8.  

 

 
Fig. 8 Pareto solutions for NLPQL (Left) and A-

NLPQL (Right) 

 

Figure 8 shows a typical set of Pareto optimal 

solutions as obtained from one of the 19 iterations of 

the NLPQL and A-NLPQL. The results from A-

NLPQL are good as compared with the NLPQL. 

Figure 8 shows the NumSimCall (number of 

simulation calls) for 30 iterations. The results show 

that for problem 2, the NumSimCall has been 

reduced by 169 simulation calls and 24 iterations 

using the proposed A-NLPQL compared to the 

NLPQL; so the optimization process was much 

faster. Time taken for complete the converged 

solution for problem 2 through NLPQL is 25min 

and through A-NLPQL is 10min. 

 

Problem 3: Definition 

This standard problem is taken from Yong Wang et. 

al, 2007
[23]

. The problem formulation has been given 

as: 

Maximize   f(x) =x1
2
+(x2-1)

2
 

subject to   g(x) =x2-x1
2 
 0 

where   -1  x1, x2  1 

The optimum solution is (x) = (±1/√2, 1/2), where f 

(x) = 0.75. Vs 

Vs 
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Fig. 9 Prob.3 optimization status of NLPQL (Left) 

and A-NLPQL (Right) 

 

 
Fig. 10 NLPQL (left) and A-NLPQL’s (right) 

Candidate points of converged solution of Prob. 3 

The Pareto frontiers from NLPQL and A-NLPQL, 

respectively, are non-convex as shown in Figure 11.  

 

 
Fig. 11 Pareto solutions for NLPQL (Left) and A-

NLPQL (Right) of prob.3 

 

Figure 11 shows a typical set of Pareto optimal 

solutions as obtained from the NLPQL and A-

NLPQL. The results from A-NLPQL are good as 

compared with the NLPQL, that is f(x) = 0.75. 

Figure 11 shows the NumSimCall (number of 

simulation calls) for 30 iterations. The results show 

that for problem 3, the NumSimCall has been 

reduced by 12 simulation calls and 04 iterations 

using the proposed A-NLPQL compared to the 

NLPQL; so the optimization process was much 

faster. Time taken for complete the converged 

solution for problem 3 through NLPQL is 10min 

and through A-NLPQL is 5min. 

Problem 4: Definition 

This standard problem is taken from Yong Wang et. 

al, 2007
[23]

. The problem formulation has been given 

as: 

Minimize  f(x) = (x1-10)
3
+(x2-20)

3 

Subject to  g1(x) = -(x1-5)
2
-(x2-5)

2
+100  0 

g2(x) = (x1-6)
2
-(x2-5)

2
-82.81  0 

Where   13  x1  100 and 0  x2  100 

For the above given problem the optimization status 

are as shown below: 

 
Fig. 12 Prob.4 optimization status of NLPQL (Left) 

and A-NLPQL (Right) 

 

 
Fig. 13 NLPQL (left) and A-NLPQL (right) 

Candidate points of converged solution of Prob.4 

The Pareto frontiers from NLPQL and A-NLPQL, 

respectively, are non-convex as shown in Figure 14.  

 

 
Fig. 14 Pareto solutions for NLPQL (Left) and A-

NLPQL (Right) of Prob.4 

 

Figure 14 shows the optimum solution calculated 

with NLPQL is x = (13, 20.361), where f (x) = 

27.047 and with A-NLPQL x = (13, 17.806), where f 

(x) = 16.442. Both constraints are active. Figure 14 

shows a typical set of Pareto optimal solutions as 

obtained from the NLPQL and A-NLPQL. Figure 

14 shows the NumSimCall (number of simulation 

calls) for 30 iterations. The results show that, for 

problem 4, the NumSimCall has been reduced by 13 

simulation calls and 06 iterations using the proposed 

A-NLPQL compared to the NLPQL; so the 

optimization process was much faster. Time taken 

for complete the converged solution for problem 4 

through NLPQL is 12min and through A-NLPQL is 

7min. 

Problem 5: Definition 

This problem is taken from Hira and Gupta, 2011
[41]

. 

The problem formulation has been given as: 

Maximize  f(x) =2x1+3x2 

Subjected to g1(x) =x1+x2 30 

g2(x) =x1-x2 π 0 

Vs 

Vs 
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where   0  x1  20 and 3  x2  12 

For the above problem the optimization status are as 

shown below: 

 

 
Fig. 15 Prob.5 optimization status of NLPQL (Left) 

and A-NLPQL (Right) 

 

 
Fig. 16 NLPQL (left) and A-NLPQL (right) 

Candidate points of converged solution of Prob.5 

The Pareto frontiers from NLPQL and A-NLPQL, 

respectively, are non-convex as shown in Figure 17.  

 

 
Fig. 17 Prob.5 Pareto solutions for NLPQL (Left) 

and A-NLPQL (Right) 

 

Figure 16 shows the optimum solution calculated 

with NLPQL and A-NLPQL, which is (equal) x = 

(18, 12), where f (x) = 72. Both constraints are 

active. Figure 17 shows a typical set of Pareto 

optimal solutions as obtained from the NLPQL and 

A-NLPQL. Figure 17 shows the NumSimCall 

(number of simulation calls) for 30 iterations. The 

results show that, for problem 5, the NumSimCall 

has been reduced by 02 simulation calls and 03 

iterations using the proposed A-NLPQL compared 

to the NLPQL; so the optimization process was 

much faster. Time taken for complete the converged 

solution for problem 5 through NLPQL is 03min 

and through A-NLPQL is 02min. 

 

Problem 6: Definition (TP 4) 
This example is a relative standard example taken 

from Jui-Yu Wu, 2012 
[24]

. TP 4 involves 13 

decision variables, nine inequality constraints, and 

26 boundary conditions, as follows: 

Minimize  f(x) = 5 𝒙𝒏 − 𝟓𝟒
𝒏=𝟏  𝒙𝒏

𝟐 −  𝒙𝒏
𝟏𝟑
𝒏=𝟓

𝟒
𝒏=𝟏  

Subject to   g1(x) = 2x1 + 2x2 + x10 + x11 − 10≤ 0, 

     g2(x) = 2x1 + 2x3 + x10 + x12 − 10≤ 0, 

     g3(x) = 2x2 + 2x3 + x11 + x12 − 10≤ 0, 

    g4(x) = - 8x1 + x10≤ 0, 

g5(x) = - 8x2 + x11≤ 0, 

g6(x) = −8x3 + x12≤ 0, 

g7(x) = −2x4 − x5 + x10≤ 0, 

g8(x) = −2x6 − x7 + x11≤ 0, 

g9(x) = −2x8 – x9 + x12≤ 0 

Where  0 ≤ xn ≤ 1, n = 1, 2, . . . , 9, 

0 ≤ xn ≤ 100, n = 10, 11, 12, 

0 ≤ x13 ≤ 1 

For the above given problem the optimization status 

are as shown below: 

 

  
Fig. 18 Porb.6 optimization status of NLPQL (Left) 

and A-NLPQL (Right) 

 

 

 
Fig. 19 NLPQL (Upper) and A-NLPQL (Lower) 

Candidates of converged solution of Prob.6 

Vs 
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The Pareto frontiers from NLPQL and A-NLPQL, 

respectively, are non-convex as shown in Figure 20.  

 

 
Fig. 20 Prob.6 Pareto solutions for NLPQL (Left) 

and A-NLPQL (Right) 

 

Figure 19 shows the optimum solution calculated 

with NLPQL, where NLPQL is not able to satisfy 

g1(x)  and g7(x)  constraints with f(x) = -19 and A-

NLPQL x = (1,1,1,1,1,1,1,1,1,3,3,3,1), where f(x) = -

19 with all constraints activated. Both constraints 

are active. Figure 20 shows a typical set of Pareto 

optimal solutions as obtained from the NLPQL and 

A-NLPQL. Figure 20 shows the NumSimCall 

(number of simulation calls) for 30 iterations. The 

results show that, for problem 6, the NumSimCall 

has been reduced by 71 simulation calls and 12 

iterations using the proposed A-NLPQL compared 

to the NLPQL; so the optimization process was 

much faster. Time taken for complete the converged 

solution for problem 6 through NLPQL is 37min 

and through A-NLPQL is 13min. 

 

5.1 Assessment of NLPQL and A-NLPQL 

The obtained results for these six test examples 

show that the number of simulation calls 

(NumSimCall) used in the A-NLPQL is significantly 

fewer than the NLPQL, while the obtained Pareto 

solution for NLPQL method is comparable. 

Furthermore, as shown in Table 1, the A-NLPQL 

has smaller STD of the NumSimCall (based on 20 

iteration runs) than the NLPQL, which indicates that 

compared to the NLPQL and the A-NLPQL has a 

more stable performance on the reduction of the 

NumSimCall. 

 

Table 1 Statistics for the NumSimCall 

S. 

No 

Example NLPQL A-NLPQL 

Mean STD Mean STD 

1 All Six 

examples 

46.5 107.75 38.5 72.45 

Based on the data in Table 2, the reduction of the 

NumSimCall for each example is calculated based 

on the mean and STD value. This calculation 

performing for the A-NLPQL over the NLPQL is 

also shown in Table 2. 

Table 2 Reduction in the NumSimCall, 

NumIterations & Time required 

 
As shown in Table 2, on the average, the proposed 

A-NLPQL can save about 41% in the NumSimCall, 

81% in the NumIterations and 52% time over the 

NLPQL. It is observed that the A-NLPQL 

outperforms the NLPQL and is more stable than the 

NLPQL, in terms of the number of simulation calls, 

for these six examples. 

 

VII. CONCLUSION 
We discussed about the various individual 

optimization and metamodeling techniques, by 

means of which an improved LHS and kriging 

assisted NLPQL technique was developed to 

enhance the computational efficiency of a single-

objective optimization. In this project we proposed 

an enhanced NLPQL, called Adaptive Non Linear 

Programming Lagrangian (A-NLPQL) in which the 

online LHS and kriging-based metamodel is inter 

connected within a NLPQL.  

NLPQL can add accuracy to the response surface-

based approach, but is highly dependent on the 

quality of the starting point. A-NLPQL is an 

adaptive method that combines a DOE (LHS), an 

internal response surface (kriging), domain 

reduction and error prediction. It provides both 

accuracy and speed without needing prior results to 

initialize the optimization, and allows you to 

balance your available time and resources with your 

desired level of accuracy. While a Response Surface 

Optimization or the NLPQL algorithm may be 

sufficient for exploring problems that are convex or 

smooth, the A-NLPQL algorithm is a better 

optimization choice when you are not already very 

familiar with your problem.  

The results show that, on the average. A-NLPQL 

outperforms both a conventional NLPQL and our 

recently developed A-NLPQL and has higher 

stability in terms of the number of simulation calls 

used in the optimization. 
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